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RELATIONS FOR GASDYNAMIC DISCONTINUITIES FOR TWO-PHASE 

FLOWS OF A NONEQUILIBRIUM CONDENSING VAPOR 

A. M. Trevgoda UDC 533.6.011.5:536.423.4 

Equations of characteristics and relations along characteristics are presented along 
with relations for normal and oblique shock waves for a two-phase flow of a non- 
equilibrium condensing vapor. 

i. We will examine a two-dimensional steady-state flow of a nonequilibrium condensing 
vapor in the initial condensation zone in a one-velocity approximation. We assume the vapor 
phase to be a perfect gas. 

The system of conservation equations in this case has the form [i] 

d i v ( p ~ ) = O ,  p (~ .V)  W + v p = O ,  d i v ( p I ~ ) = O ,  (1)  

where 

~2 p'si' + p" (1 -- s) F (2)  9 - - O ' s + 9 " ( l - - s )  I ~ i  + -~-  ; i =  
O 

k p (3) 
p = p"RT"; i" -- 

k - - 1  fl" 
Excluding the derivatives of density from system (i) with the use of equation of state 

(3), we obtain 

( u2 _ a 2 ) & &_s Ov Ov = ma 2 , tp O7 + UV ay + uV-~x + (v2 - -  a~p) 0~/ tp 

where atp is the analog of the speed of sound in the two-phase medium, 

F/- k- -1  i =  / k - - 1  p'si'-t- p" (1 - -s )  i" 
atp = 1 - -  k s  ' 1 - -  k s  fl ' 

(4) 

(5) 
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TABLE i. Coefficients of Formulas to Calculate 
Shock Waves in a Two-Phase Flow 

Coef- 
fi- ~=const s = const 
cient 

(k + 1) Sl - -  2ks, 2p'sii' 2~ (sl - -  s,) 

(~3 

(Z 4 

? i  

y o 

?3 

?7 

~3S1 

(k+  !) ( l - - s 0  

k - - I  

(Z 4 k + 1 - -  2ksi 

0 

( k+  1) (1 --sl)  

k + l  
0 

k - -  1 + 2,~s, 

~2 ~ ~4 

2 (1 - -  ks 0 

(~ "+ 1) ( 1 - - 8 1 )  

--~474 

(1 - -  Y4) 

2p' sii' k - -  1 

9ia2. k + 1 - -  2ks, 

0 

v, (,~- I) M~ 
1 --  ?~ 2 (1 --ksl) 

k - - I  
T 6 - -  k-+-I 

0 
0 

k - - I  

k + 1 - -  2ksi 

k't" 1 - -2ks ,  

29's~i' ( k . -  1) 
k - - 1  

2(I 

@+ ~) 

~3 

-- ksO 

0 

~2 

~5 

?5 

2 (1 - -  ks 0 

-- ( as) o's ( Oi' ai"\ (6) 
o'i' 77 

m u + v  + u + v 

Comparing the quantity atp with the adiabatic speed of sound in a perfect gas aon e = 
/kp/p", we obtain the following equation connecting them: 

( ") aone 1 O's 1 - -  F (7)  
a t P - - ] / 1 -  ks  p 

2. E q u a t i o n  (4)  c a n  be  u s e d  t o g e t h e r  w i t h  t h e  e q u a t i o n s  o f  m o t i o n  t o  f i n d  c h a r a c t e r -  
i s t i c s  o f  t h e  f l o w .  H a v i n g  p e r f o r m e d  f a m i l i a r  t r a n s f o r m a t i o n s  ( s e e  [ 2 ] ,  f o r  e x a m p l e ) ,  we 
f i n d  t h a t  t h e  c h a r a c t e r i s t i c s  o f  t h e  t w o - p h a s e  f l o w  b e i n g  e x a m i n e d  a r e  l i n e s  d e t e r m i n e d  by 
t h e  e q u a t i o n s  d y / d x  = v / u ,  as  w e l l  a s  two f a m i l i e s  o f  c h a r a c t e r i s t i c  c u r v e s  s a t i s f y i n g  t h e  

e q u a l i t y :  

dy  uv  • a m V w 2 - - - a ~  p ~ ] /  M 2 - -  1 • 1 
(8)  

dx u ~ - a~p = J I M  2 - l - T -  ~ ' 

where 

= v/u; M = w/atp 

The compatibility conditions used along characteristics (8) have the form 

3 

d~ ~ 1----~+~--- V ~ - -  1 dp ~ (1 + ~2)T  mdx = O. 
o~ ~ ~ (V M~-- 1 T ~) 

It is apparent that in the absence of moisture (s = O, m = O) Eq. (i0) 
the well-known relation from single-phase gasdynamics [2]. 

(9) 

(io) 

coincides with 
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3. The problem of calculating a shock wave in a two-phase flow was examined in [3, 4] 
with different assumptions. The study [3] only addressed the problem of transition across 
the shock for the process of conservation of thermodynamic equilibrium of the phases and 
long-term relaxation. The investigation [4] proposed the iteration method for the first of 
these cases. 

, ,  , 

Let the following parameters be known before the shock: wx, Pl, 0~, Pl, sl, T i 
T:'(i~). We need to find the values of the following parameters after the shock: w2, p2 
0~, p~, s~, T" i" i' . ~ ( ~ ) ,  T ~ ( ~ )  

Applying the laws of conservation to the mass of a moist vapor enclosed in an elemental 
cylinder with its cross section normal to the direction of the incoming flow and equal to unity, 
we obtain the following equations: 

P l ~ I  --- P2~2, P2 = Pl  + PlWl (~1 - -  ~2), 2i~ + w~ = 2f i + w~ . ( 1 1 )  

To close this system we need additional conditions pertaining to the change in the parame- 
ters of the liquid phase in the transition across the shock. We will assume that the tempera- 
ture of the moisture remains constant and we will examine two cases: 

a) The mass concentration ~ of the liquid phase is constant (~ = const). This corresponds 
to a process with a long relaxation period, in which phase transitions begin to develop only 
behind the shock front. 

b) The volume concentration s of the liquid phase is constant (s = const). In this case, 
the process occurs in such a way that some of the moisture is evaporated as a result of the 
transition across the shock. 

Having used familiar transformations and excluded density Pa and pressure p2 from these 
equations, we obtain 

~1w2 ~ a 2. + ala~ + a ~  , (12) 

where a~ and a2 are coefficients shown in Table i. Also shown are the coefficients of the 
following formulas. 

Introducing thevelocity coefficient ~ = w/a,, we reduce Eq. (12) to the form 

~1%~ ~ i + al + a2%~ (13) 

It is clear that in a single-phase flow with s = 0 Eq. (13) becomes the familiar Prandtl 
equation for a normal shock [5]. 

The rest of the parameters behind the normal shock can be found from the formulas 

Pl 1 ~- (% 1 ~- o~i~ ~ ' p l ~  ~ 

f i  s. P -P% T; -  
a3 1 - -  s~ ' ~ R  

4. In the equation 2i + w 2 = const, valid for steady-state adiabatic two-phase flow, 
we can find the constant from the condition atp = a* with w = a,. From this, using (5) we 
obtain the equation 

2 ( 1 - - k s )  a~p k +  1 - - 2 k s ,  a~ 
k - - 1  w ~ + 1 : k - - 1  w ~ ' 

from which we find the connection between k and M for a two-phase flow: 

. , /  k + i--2ks, M 
I /  2(1- -ks )  . / k - - 1  

V 1 + 2 ( 1 - - k s )  
M2 

Instead of the number M = w/atp we sometimes examine the number M" = W/aon e for the 
vapor phase. Using Eq. (7), we have 

1 p ' s  I - -  -i,- 7 -  
M " =  P M. 

1 - -  ks 

1279 



5. Equations (Ii) can be used to find the relationship between the pressure P= and 
the density Pa of the two-phase flow behind the shock and the analogous quantities Pi and Pi 
ahead of the shock: 

Pl BsP~ @ (k + 1 - -  2ksx) pl + 82 

These  f o r m u l a s  a r e  t h e  t w o - p h a s e  a n a l o g  o f  t h e  H u g o n i o t  c u r v e  f o r  a s i n g l e - p h a s e  f l o w .  

6. Le t  us examine  an o b l i q u e  s h o c k  wave .  A p p l y i n g  t h e  laws  o f  c o n s e r v a t i o n  to  t h e  
mass o f  m o i s t  v a p o r  e n c l o s e d  w i t h i n  an e l e m e n t a r y  c y l i n d e r  w i t h  i t s  g e n e r a t r i x  c o i n c i d e n t  
w i t h  t h e  d i r e c t i o n  o f  a no rm a l  to  an e l e m e n t  o f  t h e  s u r f a c e  o f  a s e v e r e  shock  and r e a s o n i n g  
similarly to the case of a normal shock, we arrive at the following relations: 

~)I[QJln : ~)27-~2n, [PfllT : [{)IT, 

P2 = Pl + 9~wl~ (w~ -- w~), 

2i2 + w~n = 2il + w~n, (15) 

from which, similarly to (12), we obtain 

w]~wl~ : al. + %a~ q- a l w ~ - - % w ~ .  (16) 

Hav ing  c h o s e n  t h e  c o o r d i n a t e  a x e s  so  t h a t  t h e  x a x i s  c o i n c i d e s  w i t h  t h e  d i r e c t i o n  o f  t he  
v e l o c i t y  wl to  t h e  s u r f a c e  o f  t h e  d i s c o n t i n u i t y  and h a v i n g  used  ~ to  d e s i g n a t e  t h e  a n g l e  o f  
i n c l i n a t i o n  o f  t h e  t a n g e n t  a t  t h e  g i v e n  p o i n t  o f  t h e  s u r f a c e  to  t h e  x a x i s  and 6 to  d e s i g n a t e  
t h e  a n g l e  o f  i n c l i n a t i o n  o f  t h e  v e l o c i t y  v e c t o r  ~a to  t h e  x a x i s ,  we t r a n s f o r m  t h e  e q u a t i o n s  
o f  s y s t e m  (15) so t h a t  we o b t a i n  

cos qo 
W 2 = 7 ~  1 

cos (9 -- 6) 

t g 9  (17)  
92 = 91 

tg (9 - -  6) 

s ings in8  
P~ = Pl + plw~ 

cos (9 -- 6) 

Us ing  Eqs .  (17) and (16 ) j  we o b t a i n  t h e  f o l l o w i n g  e q u a t i o n :  
72 (1 - -  '~1) sin~ 9 M~ Va 

tg6 = ctgq~ (18) 
~2 

1 - - ( 1 - - y l )  sinlqD + M----~-q- % 

E q u a t i o n  (18) makes i t  p o s s i b l e  to  d e t e r m i n e  t h e  a n g l e  qD f o r  a p r e s c r i b e d  d i r e c t i o n  
b e h i n d  an o b l i q u e  shock ,  Knowing qD and ~, we can  use  Eqs .  (17) to  f i n d  t h e  p a r a m e t e r s  wa, 

pa ,  and Pa and t h e n  d e t e r m i n e  t h e  r e m a i n i n g  q u a n t i t i e s  b e h i n d  t h e  s h o c k .  

If, besides the number M~, we also know the pressure ratio Pa/P~, then, by simultaneously 
solving Eqs. (14), (17), and (18), we can find the angle of inclination of the surface of the 

discontinuity : 

I 

ctgq~ = [ l k ( 1 -  Sl) Pl -~ YS] M~ 1 

Having inserted (19) into (18), we obtain a formula for the increment in the angle of 
inclination of velocity in the transition across an oblique shock: 

1 

P l - - P i  [lk(1 - - s l ) p i  + ys]M~ - -  1 
! k( l  - -  st) pl / 

M~ 76P-~ -5- YTPl + 78 
t g 6 : [  1 - -  ks] § Yg/J - - P 2  + Pi 

It is apparent that in the absence of moisture (s = 0) the formulas obtained here for 
shock waves agree with the well-known relations of single-phase gasdynamics [5]. The 
parameters of a two-phase flow behind a shock that are found with these formulas lead to 
significant differences fromthe single-phase analogs. For example, with a mass moisture con- 

tent of 5-8%, these deviations reach 6-10%. 
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7. The relations obtained in this article can be used directly to calculate shock waves 
and rarefaction waves in two-phase media. They can also be used in different applications of 
numerical through-count algorithms to problems of calculating nonequilibrium two-phase flows. 
It is known [6, 7] that methods such as a steady-state analog of the Godunov difference 
scheme for calculating supersonic flows include solutions of gasdynamic problems on the break- 
down of a shock and different analogs of the latter. Here, the computing algorithms contain 
formulas connecting parameters at the shock and in the rarefaction wave. Thus, the relations 
obtained in this article for discontinuities of gasdynamic quantities can be used directly in 
devising methods of calculating steady-state two-phase flows based on the above-noted numeri- 
cal schemes. 

NOTATION 

atp, speed of sound in two-phase medium; gone, speed of sound in single-phase medium; 
i, enthalpy; I, total enthalpy; k, exponent of adiabatic curve; M, Mach number; p, pressure; 
R, gas constant; s, volume concentration of liquid phase; T, temperature; u, v, velocity 
components; w, velocity; y, mass concentration of liquid phase; ~, angle of rotation of flow 
in transition across an oblique shock; ~ , angleof inclination of surface of a severe shock; 
~, velocity coefficient; p, density. Indices: n, T, directions of normal and tangent to an 
element of the shock surface; 1 and 2, parameters before and after shock; ', liquid phase; 
", vapor phase; ,, parameters in the critical section. 
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